Question 826393
Prove using reciprocal and Pythagorean identities: (secx-cosx)/(secx)= sin^2
***
{{{(sec(x)-cos(x))/sec(x)= sin^2(x)}}}
start with left side:
{{{(sec(x)-cos(x))/sec(x)}}}
..
{{{(1/cos(x)-cos(x))/sec(x)}}}
..
{{{((1-cos^2(x))/cos(x))/(1/cos(x))=1-cos^2(x)=sin^2(x)}}}
verified: left side=right side