Question 826437
x length
w wide

{{{w=x+5}}};
If x+2 and w+2, then area is increased, +50 cm*cm.


{{{xw=A}}}, A for area.
{{{(x+2)(w+2)=A+50}}};
{{{w=x+5}}}.
'
Let us substitute for w into the two area equations.
{{{x(x+5)=A}}},
{{{highlight_green(x^2+5x=A)}}}.----Original area
'
{{{(x+2)((x+5)+2)=A+50}}}-----for Increased dimensions area
{{{(x+2)(x+7)=A+50}}}
{{{x^2+9x+14=A+50}}}, and remember we can also substitute for A;
{{{x^2+9x+14=(x^2+5x)+50}}}
{{{x^2+9x+0=x^2+5x+36}}}
{{{9x=5x+36}}}
{{{4x=36}}}
{{{highlight(x=9)}}}
-
Now to find value of w:
{{{w=x+5}}}
{{{w=9+5}}}
{{{highlight(w=14)}}}