Question 825970
<pre>
{{{drawing(400,2000/7,-6,8,-5,5, 
line(-4,-2,-4,2),line(-4,-2,6,3),line(-4,2,6,-3), line(6,3,-4,-2),
line(6,3,6,-3), line(3,1.5,3,-1.5),locate(-4,-2,E),locate(-4,2.6,F),
locate(-.1,-.1,G), locate(2.8,-1.6,J),locate(6,-3,H),locate(6,3.5,I),
locate(2.8,2.1,K),red(locate(5.6,2.8,3),locate(2.5,1.3,1),locate(-3.9,-1.4,2)))}}}



&#916;KGJ &#8765; &#916;IGH                             Two triangles are similar if an angle
                                        of 1 triangle is congruent to the
                                        angle of the other triangle and the 
                                        sides containing these angles are in 
                                        the same ratio. (Like "SAS" but for
                                        similar, not congruent, triangles)

&#8736;1 &#8773; &#8736;3                                corresponding parts of similar 
                                        triangles

&#8736;1 &#8773; &#8736;2                                Given

&#8736;2 &#8773; &#8736;3                                Angles congruent to the same angle  
                                        are congruent
 
EF &#8741; HI                                 If the alternate interior angles are 
                                        congruent, then the lines are
                                        parallel.”   

Edwin</pre>