Question 825472
Another Complete-the-Square question!


{{{2x^2-12+2x=x^2-4x+4+2}}}
{{{x^2-12+2x=-4x+6}}}
{{{x^2+6x-18=0}}}
'
The rectangular area {{{x^2+6x}}} being x accross x+6, is missing the square piece, {{{(6/2)^2=3^2=9}}}.
'
{{{x^2+6x+(9-9)-18=0}}}
{{{x^2+6x+9-9-18=0}}}
{{{highlight((x+3)^2-27)=0}}}, DONE.