Question 824359
You can find the x and y components
of each vector, then add x's, then
add y's. The vector sum can then be found
------------------------------------------
{{{ A[x] = -A*cos(4) }}}
{{{ A[y] = -A*sin(4) }}}
------------------------
Note that 184 degrees is in the 3rd
quadrant where both sin and cos are negative
{{{ 184 - 180 = 4 }}} is the angle the
vector makes with the x-axis
-----------------------------
{{{ B[x] = B*cos(12) }}}
{{{ B[y] = -B*sin(12) }}}
-------------------------
Vector B is in the 4th quadrant where
the cos is positive and sin is negative
{{{ 360 - 348 = 12 }}} is the angle B
makes with the x-axis
----------------------
{{{ A[x] + B[x] = -A*cos(4) + B*cos(12) }}}
{{{ A[x] + B[x] = -352*.9976 + 283*.9781 }}}
{{{ A[x] + B[x] = -351.1552 + 276.8023 }}}
{{{ A[x] + B[x] = -74.3529 }}}
------------------------------
{{{ A[y] + B[y] = -A*sin(4) - B*sin(12) }}}
{{{ A[y] + B[y] = -352*.0698 - 283*.2079 }}}
{{{ A[y] + B[y] = -24.5696 - 58.8357 }}}
{{{ A[y] + B[y] = -83.4053 }}}
------------------------------
These magnitudes both being negative means 
the resultant vector is in the 3rd quadrant
Call the resultant vector {{{ C }}}
{{{ C^2 = ( -74.3529 )^2 + ( -83.4053 )^2 }}}
{{{ C^2 = 5528.3537 + 6956.4441 }}}
{{{ C^2 = 12484.7978 }}}
{{{ abs( C ) = 111.7354 }}}
This is the magnitude of the resultant vector, {{{ C }}}
-----------------------------
The angle, {{{a}}} with the x-axis is:
{{{ cos(a) = 74.3529 / 83.4053 }}}
{{{ cos(a) = .8915 }}}
{{{ a = 26.9377 }}}
This angle is in the 3rd quadrant, so I have
to add {{{ 180 }}} degrees
{{{ a + 180 = 26.9377 + 180 }}}
{{{ a + 180 = 206.9377 }}}
-----------------------------
So, the answer is:
111.7354 angle 206.9377
Unless I made an error ( very possible )
-----------------------------------------
This method always works. you might be asked
to do it a different way, but the result
should be the same
hope this helps