Question 824253
quadrilateral
edge lengths 
| (sqrt(5)  |  sqrt(17)  |  sqrt(5)  |  sqrt(17))
=(2.23607  |  4.12311  |  2.23607  |  4.12311)
diagonal lengths 
| (2 sqrt(2)  |  6)
=(2.82843  |  6)
area | 6
perimeter | 2 (sqrt(5)+sqrt(17))=12.7183
interior angles 
| ((180 (pi-tan^(-1)(1/4)-tan^(-1)(1/2)))/pi°  |  (180 (tan^(-1)(1/4)+tan^(-1)(1/2)))/pi°  |  (180 (pi-tan^(-1)(1/4)-tan^(-1)(1/2)))/pi°  |  (180 (tan^(-1)(1/4)+tan^(-1)(1/2)))/pi°)=
(2.43297 radians  |  0.708626 radians  |  2.43297 radians  |  0.708626 radians)
interior angle sum | 360° = 2 pi rad
exterior angle sum | 1080° = 6 pi rad


| (-1, 4) | (-3, 3) | (1, 2) | (3, 3)
(-1, 4) | 0 | sqrt(5)=2.23607 | 2 sqrt(2)~~2.82843 | sqrt(17)~~4.12311
(-3, 3) | sqrt(5)~~2.23607 | 0 | sqrt(17)~~4.12311 | 6
(1, 2) | 2 sqrt(2)~~2.82843 | sqrt(17)~~4.12311 | 0 | sqrt(5)~~2.23607
(3, 3) | sqrt(17)~~4.12311 | 6 | sqrt(5)~~2.23607 | 0