Question 821398
Verify: tanx/sec-1=secx+1/tanx
***
{{{tan(x)/(sec(x)-1)=sec(x)+1/tan(x)}}}
start with left side
{{{tan(x)/(sec(x)-1)=(sin(x)/cos(x))/(1/cos(x)-1)=sin(x)/(1-cos(x))}}}
..
{{{(sin(x)/(1-cos(x)))*((1+cos(x))/(1+cos(x)))=(sin(x)+sin(x)cos(x))/(1-cos^2(x))=(sin(x)+sin(x)cos(x))/(sin^2(x))=(1/sin(x))+(cos(x)/sin(x))=csc(x)+(1/tan(x))}}}
not verified: I got csc(x) instead of matching sec(x)
Check if I interpreted given identity correctly.