Question 819444
graph the ellipse and give the domain and range
[(x-8)^2/100]+[(y-5)^2/49]=1
This is an equation of an ellipse with horizontal major axis.
Its standard form of equation: {{{(x-h)^2/a^2+(y-k)^2/b^2=1}}}, a>b, (h,k)=(x,y) coordinates of center.
..
For given ellipse:
center:(8,5)
a^2=100
a=√100=10
vertices: (8±a,5)=(8±10,5)=(-2,5) and (18,5)(end-points of horizontal major axis)
b^2=49
b=√49=7
minor axis: (8,5±b)=(8,5±7)=(8,-2) and (8,12) (end-points of minor axis)
domain:(-2,18)
range:(-2,12)

see graph below:
y=±(49-49(x-8)^2/100)^.5+5

{{{ graph( 300, 300, -10, 20, -10, 20,(49-49(x-8)^2/100)^.5+5,-(49-49(x-8)^2/100)^.5+5) }}}