Question 68549
{{{(x^2y^-1m^-3)^3/2p^-4}}}

1. Simplify the numerator {{{(x^2y^-1m^-3)^3/2p^-4}}}
<br>Property of Exponent
For all real numbers a and for all positive integers m and n:
{{{(a^m)^n = a^mn}}}
<br>{{{(x^2*y^-1*m^-3)^3/2p^-4}}}
<br>{{{(x^(2*3)y^(-1*3)m^(-3*3))/2p^-4}}}
<br> {{{(x^6y^-3m^-9)/2p^-4}}}
<br><br>2. For all real numbers a, a&#8800;0, and for all integers n:
{{{a^(-n) = 1/a^n}}}
<br>Apply the Definition of Negative exponent
{{{(x^6*1/y^3*1/m^9)/(2*1/p^4)}}}
<br><br>{{{(x^6*1/y^3*1/m^9)*(p^4/2)}}}
<br> {{{highlight (x^6p^4/2y^3m^9)}}}