Question 809000
The sum of the digits of a three digit number is 11. The hundreds digit exceeds the sum of the tens digit and the units digit by 1. When the digits are reversed, the new numbers is 396 less than the original number. Find the number. 
***
let u=units digit
let t=tens digit
let h=hundreds digit
...
u+t+h=11
h=u+t+1
..
100h+10t+u=100u+10t+h+396
...
u+t+h=11
u+t-h=-1
subtract
2h=12
h=6
..
u+t-h=-1
u+t-6=-1
u+t=5
t=5-u
..
100h+10t+u=100u+10t+h+396
100*6+10t+u=100u+10t+6+396
10t cancels out
600+u=100u+6+396
99u=198
u=2
t=5-u=3
original number:632