Question 68215
Simplify the "expression":
{{{((a-b)/(a+b))/((a^2-b^2)/(a^2+2ab+b^2))}}} This appears more formidable than it really is!
Remember that to divide fractions..."Copy - Flip - Flip"
{{{((a-b)/(a+b))*((a^2+2ab+b^2)/(a^2-b^2))}}} Now, in the second parentheses, factor the numerator.
{{{((a-b)/(a+b))*(((a+b)^2)/(a^2-b^2))}}} Rewrite this as:
{{{((a-b)/(a+b))*(((a+b)(a+b))/(a^2-b^2))}}} Now cancel factors where appropriate.
{{{((a-b)(a+b))/(a^2-b^2)}}} Simplify the numerator.
{{{(a^2-b^2)/(a^2-b^2)}}} = 1