Question 803728
if x is in the first and y in the third quadrant, sinx=3/5, and cosy=-5/13, find the exact value of sin(x+y), cos(x+y), and tan(x+y)?
***
sinx=3/5
so, you are working with a 3-4-5 reference right triangle in quadrant
cosx=4/5
tanx=sinx/cosx=3/4
..
cosy=-5/13
so, you are working with a 5-12-13 reference right triangle in quadrant III
siny=-12/13
tany=-12/-5=12/5
..
Identity: sin(x+y)=sinx*cosy+cosx*siny
{{{(3/5)(-5/13)+(4/5)(-12/13)}}}
{{{(-15/65)+(-48/65)=-63/65}}}
..
Identity: cos(x+y)=cosx*cosy-sinx*siny
{{{(4/5)(-5/13)-(3/5)(-12/13)}}}
{{{(-20/65)-(-36/65)=16/65}}}
..
Identity: tan(x+y)={{{(tanx+tany)/(1-tanx*tany)}}}
{{{((3/4)+(12/5))/(1-(3/4)*(12/5))}}}
{{{((15/20)+(48/20))/(1-(36/20))}}}
{{{(63/20)/(-16/20)=-63/16}}}
..
Calculator check:
sinx=3/5
x≈36.87˚
cosy=-5/13
y≈67.38˚+180≈247.38˚
x+y≈284.25˚
..
sin(x+y)≈sin(284.25˚)≈-0.9692..
Exact value as calculated=-63/65≈-0.9692..
..
cos(x+y)≈cos(284.25)≈0.2461..
Exact value as calculated=16/65≈0.2461..
..
tan(x+y)≈tan(284.25)≈-3.9375..
Exact value as calculated=-63/16≈-3.9375..