Question 803431
<pre>
n^2 = 10*k+r  0 <u><</u> r <u><</u> 9

r is the units (last) digit of a perfect square
Since 

0²=0
1²=1, 
2²=4, 
3²=9
4²=16
5²=25
6²=36
7²=81
8²=64
9²=81

the last (units) digit of ALL perfect squares can
only be 0,1,4,5,6, or 9.  Thus r can be
0,1,4,5,6, or 9, r cannot be 2,3,7, or 8.
 
0<sup>2</sup> = 10(0) + 0
1<sup>2</sup> = 10(0) + 1
2<sup>2</sup> = 10(0) + 4
3<sup>2</sup> = 10(0) + 9
4<sup>2</sup> = 10(1) + 6
5<sup>2</sup> = 10(2) + 5
6<sup>2</sup> = 10(3) + 6
7<sup>2</sup> = 10(4) + 9

Edwin</pre>