Question 799270
Solve 8cos^2(x)-6sin(x)-9 = 0 for all solutions 0 <= x < 2pi
***
8cos^2(x)-6sin(x)-9 = 0
8(1-sin^2(x))-6sin(x)-9=0
8-8sin^2(x)-6sin(x)-9=0
8sin^2(x)+6sin(x)+1=0
solve for sin(x) using quadratic formula:
{{{sin(x) = (-b +- sqrt( b^2-4*a*c ))/(2*a) }}}
a=8, b=6, c=1
ans:
x=-0.5
sin(x)=-0.5
x=7&#960;/6,11&#960;/6(in quadrants III and IV where sin<0)
or 
x=-0.25
sin(x)=-0.25
x&#8776;3.3942,6.0305(in quadrants III and IV where sin<0)