Question 799269
Solve cos^2(w)=-3sin(w) for all solutions 0 <= w < 2pi
cos^2(w)=-3sin(w)
1-sin^2(w)=-3sin(w)
sin^2(w)-3sin(w)-1=0
use quadratic formula to solve for sin(w)
{{{sin(w) = (-b +- sqrt( b^2-4*a*c ))/(2*a) }}}
a=1, b=-3, c=-1
ans:
sin(w)=-0.3028
w&#8776;3.4492, 5.9755 (in quadrants III and IV where sin<0)
or
sin(w)=3.3028(reject, -1 < sin(w) < 1)