Question 795620
I'll do the first one to get you started.



Looking at the expression {{{4a^2-20ab^2+25b^4}}}, we can see that the first coefficient is {{{4}}}, the second coefficient is {{{-20}}}, and the last coefficient is {{{25}}}.



Now multiply the first coefficient {{{4}}} by the last coefficient {{{25}}} to get {{{(4)(25)=100}}}.



Now the question is: what two whole numbers multiply to {{{100}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-20}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{100}}} (the previous product).



Factors of {{{100}}}:

1,2,4,5,10,20,25,50,100

-1,-2,-4,-5,-10,-20,-25,-50,-100



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{100}}}.

1*100 = 100
2*50 = 100
4*25 = 100
5*20 = 100
10*10 = 100
(-1)*(-100) = 100
(-2)*(-50) = 100
(-4)*(-25) = 100
(-5)*(-20) = 100
(-10)*(-10) = 100


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-20}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>100</font></td><td  align="center"><font color=black>1+100=101</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>50</font></td><td  align="center"><font color=black>2+50=52</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>25</font></td><td  align="center"><font color=black>4+25=29</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>5+20=25</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>10+10=20</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-100</font></td><td  align="center"><font color=black>-1+(-100)=-101</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-50</font></td><td  align="center"><font color=black>-2+(-50)=-52</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-25</font></td><td  align="center"><font color=black>-4+(-25)=-29</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-5+(-20)=-25</font></td></tr><tr><td  align="center"><font color=red>-10</font></td><td  align="center"><font color=red>-10</font></td><td  align="center"><font color=red>-10+(-10)=-20</font></td></tr></table>



From the table, we can see that the two numbers {{{-10}}} and {{{-10}}} add to {{{-20}}} (the middle coefficient).



So the two numbers {{{-10}}} and {{{-10}}} both multiply to {{{100}}} <font size=4><b>and</b></font> add to {{{-20}}}



Now replace the middle term {{{-20ab^2}}} with {{{-10ab^2-10ab^2}}}. Remember, {{{-10}}} and {{{-10}}} add to {{{-20}}}. So this shows us that {{{-10ab^2-10ab^2=-20ab^2}}}.



{{{4a^2+highlight(-10ab^2-10ab^2)+25b^4}}} Replace the second term {{{-20ab^2}}} with {{{-10ab^2-10ab^2}}}.



{{{(4a^2-10ab^2)+(-10ab^2+25b^4)}}} Group the terms into two pairs.



{{{2a(2a-5b^2)+(-10ab^2+25b^4)}}} Factor out the GCF {{{2a}}} from the first group.


{{{2a(2a-5b^2)-5b^2(2a-5b^2)}}} Factor out {{{-5b^2}}} from the second group.


{{{(2a-5b^2)(2a-5b^2)}}} Factor out {{{2a-5b^2}}}


{{{(2a-5b^2)^2}}} Condense



Therefore, {{{4a^2-20ab^2+25b^4}}} factors to {{{(2a-5b^2)^2}}}