Question 794259
prove that cot (theta) cos (theta)=csc (theta)- sin (theta)
{{{cot(x)cos(x)=csc(x)-sin(x)}}}
Start with left side:
{{{cot(x)cos(x)=(cos(x)/sin(x))cos(x)=cos^2(x)/sin(x)=(1-sin^2(x))/sin(x)
=(1/sin(x))-sin(x)=csc(x)-sin(x)}}}
verified:
left side=right side