Question 791770


{{{f(x) = 15x - 12}}} 
{{{g(x) = -15x^2 + 14x - 10}}}
 
 find {{{g(g(7)) }}}

first calculate {{{g(7)}}}

{{{g(x) = -15*7^2 + 14*7 - 10}}}

{{{g(x) = -15*49 + 14*7 - 10}}}

{{{g(x) = -735 + 98 - 10}}}

{{{g(x) = -647}}}

now calculate {{{g(g(7)) }}}={{{g(-647) }}}

{{{g(-647) = -15*(-647)^2 + 14*(-647) - 10}}}

{{{g(-647) = -15*(418609)-9058 - 10}}}

{{{g(-647) = -6279135 - 9068}}}

{{{g(-647) = -6288203}}}

so, answer is : {{{A}}} {{{-6288203 }}}



{{{f(x) = -13x^2 + 12x + 14}}}

{{{ g(x) = 11x - 13 }}}
     
 find {{{f(g(7))}}}

first calculate {{{g(7)}}}

{{{ g(7) = 11*7 - 13 }}}
{{{ g(7) = 77 - 13 }}}
{{{ g(7) = 64 }}}

now {{{f(g(7))}}} which is {{{f(64)}}}

{{{f(64) = -13*64^2 + 12*64 + 14}}}

{{{f(64) = -13*4096 + 768 + 14}}}

{{{f(64) = -53248 + 782}}}

{{{f(64) = -52466}}}


answer is: {{{F}}}{{{ -52466 }}}



{{{f(x) = 11x + 15}}}
{{{g(x) = -11x^3 - 15x^2 + 13x - 13}}}
find {{{g(f(6))}}}

first calculate {{{f(6)}}}


{{{f(6) = 11*6 + 15}}}
{{{f(6) = 66+ 15}}}
{{{f(6) = 81}}}

then {{{g(f(6))}}}={{{g(81)}}}

{{{g(81) = -11*81^3 - 15*81^2 + 13*81 - 13}}}
{{{g(81) = -11*531441 - 15*6561 + 1053 - 13}}}
{{{g(81) = -5845851 - 98415 + 1040}}}
{{{g(81) = -5944266 + 1040}}}
{{{g(81) = -5943226}}}

answer is: {{{D}}}  {{{-5943226}}}