Question 787996


Looking at the expression {{{2m^2-9m+4}}}, we can see that the first coefficient is {{{2}}}, the second coefficient is {{{-9}}}, and the last term is {{{4}}}.



Now multiply the first coefficient {{{2}}} by the last term {{{4}}} to get {{{(2)(4)=8}}}.



Now the question is: what two whole numbers multiply to {{{8}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-9}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{8}}} (the previous product).



Factors of {{{8}}}:

1,2,4,8

-1,-2,-4,-8



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{8}}}.

1*8 = 8
2*4 = 8
(-1)*(-8) = 8
(-2)*(-4) = 8


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-9}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>1+8=9</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>2+4=6</font></td></tr><tr><td  align="center"><font color=red>-1</font></td><td  align="center"><font color=red>-8</font></td><td  align="center"><font color=red>-1+(-8)=-9</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-2+(-4)=-6</font></td></tr></table>



From the table, we can see that the two numbers {{{-1}}} and {{{-8}}} add to {{{-9}}} (the middle coefficient).



So the two numbers {{{-1}}} and {{{-8}}} both multiply to {{{8}}} <font size=4><b>and</b></font> add to {{{-9}}}



Now replace the middle term {{{-9m}}} with {{{-m-8m}}}. Remember, {{{-1}}} and {{{-8}}} add to {{{-9}}}. So this shows us that {{{-m-8m=-9m}}}.



{{{2m^2+highlight(-m-8m)+4}}} Replace the second term {{{-9m}}} with {{{-m-8m}}}.



{{{(2m^2-m)+(-8m+4)}}} Group the terms into two pairs.



{{{m(2m-1)+(-8m+4)}}} Factor out the GCF {{{m}}} from the first group.



{{{m(2m-1)-4(2m-1)}}} Factor out {{{4}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(m-4)(2m-1)}}} Combine like terms. Or factor out the common term {{{2m-1}}}



===============================================================



Answer:



So {{{2m^2-9m+4}}} factors to {{{(m-4)(2m-1)}}}.



In other words, {{{2m^2-9m+4=(m-4)(2m-1)}}}.



Note: you can check the answer by expanding {{{(m-4)(2m-1)}}} to get {{{2m^2-9m+4}}} or by graphing the original expression and the answer (the two graphs should be identical).