Question 787136
<font face="Times New Roman" size="+2">


Use: "The sum of the logs is the log of the product"


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \ln\left(x^2\ +\ 4x\right)\ =\ 4]


Use the definition of the logarithm function:  *[tex \Large y = \log_b(x) \ \ \Leftrightarrow\ \ b^y = x]


to write:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x^2\ +\ 4x\ =\ e^4]


Put the quadratic in standard form:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x^2\ -\ 4x\ -\ e^4\ =\ 0]


Use the quadratic formula and simplify (Hints: *[tex \Large e^4] is simply a constant, and the only meaningful way to represent that particular constant exactly.  Also, 4 factors out of the radicand)


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
<font face="Math1" size="+2">Egw to Beta kai to Sigma</font>
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>