Question 785301
{{{(2r^(-1)s^2t^0)^(-2)/2rs}}}
{{{t^0=1}}}
{{{(2r^(-1)s^2t^0)^(-2)/2rs=(2r^(-1)s^2*1)^(-2)/2rs=(2r^(-1)s^2)^(-2)/2rs}}}
When a parenthesis has an exponent outside, that exponent is multiplied times each of the exponents inside the parenthesis.
(If something inside the parenthesis does not show an exponent, it counts as having 1 for an exponent).
{{{(2r^(-1)s^2)^(-2)/2rs=2^(-2)r^((-1)(-2))s^(2*(-2))/2rs=2^(-2)r^2s^(-4)/2rs}}}
Multiplying times a power is the same as dividing by a power with the exponent sign changed, so
instead of multiplying times {{{2^(-2)}}}, we can divide by {{{2^2}}}, and
instead of multiplying times {{{s^(-4)}}}, we can divide by {{{s^4}}}.
{{{2^(-2)r^2s^(-4)/2rs=r^2/(2rs*2^2s^4)=r^2/(2rs*4s^4)=r^2/(8rs^5)=highlight(r/(8s^5))}}}