Question 780313
<font face="Times New Roman" size="+2">


The vertex of 


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \rho(x)\ =\ ax^2\ +\ bx\ +\ c]


is the point *[tex \LARGE \left(x_v,\,y_v\right)] where


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x_v = \frac{-b}{2a} ]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y_v = \rho(x_v) =\ \rho\left(\frac{-b}{2a}\right)\ =\ a\left(\frac{-b}{2a}\right)^2\ +\ b\left(\frac{-b}{2a}\right)\ +\ c]





John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
<font face="Math1" size="+2">Egw to Beta kai to Sigma</font>
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>