Question 778725
Use the Binomial Theorem to find the sixth term in the expansion of (m+2p)^7
<pre><font size = 1>

The {{{R}}}th term of {{{(A+B)^N}}} is given by
this expression:

{{{(matrix(2,1,N,R-1))A^(N-R+1)B^(R-1)}}}

where {{{(matrix(2,1,p,q))}}} means the same as {{{C(p,q)}}} or {{{pCq}}} 

In your problem {{{A=m}}}, {{{B=2p}}}, {{{N=7}}}, {{{R=6}}}

So we substitute those and get

{{{(matrix(2,1,7,6-1))m^(7-6+1)(2p)^(6-1)}}}

{{{(matrix(2,1,7,5))m^2(2p)^5}}}

{{{(21)m^2(2^5p^5)}}}

{{{21m^2*32*p^5}}}

{{{672m^2p^5}}}
Edwin</pre>