Question 778022


Looking at the expression {{{2x^2-7x-4}}}, we can see that the first coefficient is {{{2}}}, the second coefficient is {{{-7}}}, and the last term is {{{-4}}}.



Now multiply the first coefficient {{{2}}} by the last term {{{-4}}} to get {{{(2)(-4)=-8}}}.



Now the question is: what two whole numbers multiply to {{{-8}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-7}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-8}}} (the previous product).



Factors of {{{-8}}}:

1,2,4,8

-1,-2,-4,-8



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-8}}}.

1*(-8) = -8
2*(-4) = -8
(-1)*(8) = -8
(-2)*(4) = -8


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-7}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=red>1</font></td><td  align="center"><font color=red>-8</font></td><td  align="center"><font color=red>1+(-8)=-7</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>2+(-4)=-2</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-1+8=7</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-2+4=2</font></td></tr></table>



From the table, we can see that the two numbers {{{1}}} and {{{-8}}} add to {{{-7}}} (the middle coefficient).



So the two numbers {{{1}}} and {{{-8}}} both multiply to {{{-8}}} <font size=4><b>and</b></font> add to {{{-7}}}



Now replace the middle term {{{-7x}}} with {{{x-8x}}}. Remember, {{{1}}} and {{{-8}}} add to {{{-7}}}. So this shows us that {{{x-8x=-7x}}}.



{{{2x^2+highlight(x-8x)-4}}} Replace the second term {{{-7x}}} with {{{x-8x}}}.



{{{(2x^2+x)+(-8x-4)}}} Group the terms into two pairs.



{{{x(2x+1)+(-8x-4)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(2x+1)-4(2x+1)}}} Factor out {{{4}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x-4)(2x+1)}}} Combine like terms. Or factor out the common term {{{2x+1}}}



===============================================================



Answer:



So {{{2x^2-7x-4}}} factors to {{{(x-4)(2x+1)}}}.



In other words, {{{2x^2-7x-4=(x-4)(2x+1)}}}.



Note: you can check the answer by expanding {{{(x-4)(2x+1)}}} to get {{{2x^2-7x-4}}} or by graphing the original expression and the answer (the two graphs should be identical).