Question 777919


{{{(5x+4)(4x-1)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(5x)+4)(highlight(4x)-1)}}} Multiply the <font color="red">F</font>irst terms:{{{(5*x)*(4*x)=20*x^2}}}.



{{{(highlight(5x)+4)(4x+highlight(-1))}}} Multiply the <font color="red">O</font>uter terms:{{{(5*x)*(-1)=-5*x}}}.



{{{(5x+highlight(4))(highlight(4x)-1)}}} Multiply the <font color="red">I</font>nner terms:{{{(4)*(4*x)=16*x}}}.



{{{(5x+highlight(4))(4x+highlight(-1))}}} Multiply the <font color="red">L</font>ast terms:{{{(4)*(-1)=-4}}}.



---------------------------------------------------

So we have the terms: {{{20*x^2}}}, {{{-5*x}}}, {{{16*x}}}, {{{-4}}} 



{{{20*x^2-5*x+16*x-4}}} Now add every term listed above to make a single expression.



{{{20x^2+11x-4}}} Now combine like terms.



So {{{(5x+4)(4x-1)}}} FOILs to {{{20x^2+11x-4}}}.



In other words, {{{(5x+4)(4x-1)=20x^2+11x-4}}}.