Question 777814


{{{3x^2+12x-63}}} Start with the given expression.



{{{3(x^2+4x-21)}}} Factor out the GCF {{{3}}}.



Now let's try to factor the inner expression {{{x^2+4x-21}}}



---------------------------------------------------------------



Looking at the expression {{{x^2+4x-21}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{4}}}, and the last term is {{{-21}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-21}}} to get {{{(1)(-21)=-21}}}.



Now the question is: what two whole numbers multiply to {{{-21}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{4}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-21}}} (the previous product).



Factors of {{{-21}}}:

1,3,7,21

-1,-3,-7,-21



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-21}}}.

1*(-21) = -21
3*(-7) = -21
(-1)*(21) = -21
(-3)*(7) = -21


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{4}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>1+(-21)=-20</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>3+(-7)=-4</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>-1+21=20</font></td></tr><tr><td  align="center"><font color=red>-3</font></td><td  align="center"><font color=red>7</font></td><td  align="center"><font color=red>-3+7=4</font></td></tr></table>



From the table, we can see that the two numbers {{{-3}}} and {{{7}}} add to {{{4}}} (the middle coefficient).



So the two numbers {{{-3}}} and {{{7}}} both multiply to {{{-21}}} <font size=4><b>and</b></font> add to {{{4}}}



Now replace the middle term {{{4x}}} with {{{-3x+7x}}}. Remember, {{{-3}}} and {{{7}}} add to {{{4}}}. So this shows us that {{{-3x+7x=4x}}}.



{{{x^2+highlight(-3x+7x)-21}}} Replace the second term {{{4x}}} with {{{-3x+7x}}}.



{{{(x^2-3x)+(7x-21)}}} Group the terms into two pairs.



{{{x(x-3)+(7x-21)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x-3)+7(x-3)}}} Factor out {{{7}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+7)(x-3)}}} Combine like terms. Or factor out the common term {{{x-3}}}



--------------------------------------------------



So {{{3(x^2+4x-21)}}} then factors further to {{{3(x+7)(x-3)}}}



===============================================================



Answer:



So {{{3x^2+12x-63}}} completely factors to {{{3(x+7)(x-3)}}}.



In other words, {{{3x^2+12x-63=3(x+7)(x-3)}}}.



Note: you can check the answer by expanding {{{3(x+7)(x-3)}}} to get {{{3x^2+12x-63}}} or by graphing the original expression and the answer (the two graphs should be identical).