Question 777473
{{{3x/(x+2)-x/(x-2)+8/(x^2-4)}}}....common denominator is {{{x^2-4)}}} which is same as {{{x^2-2^2)}}} and factored it is {{{x-2)(x+2)}}}


{{{(3x(x-2))/((x+2)(x-2))-(x(x+2))/((x-2)(x+2))+8/(x^2-4)}}}

{{{(3x^2-6x)/(x^2-4)-(x^2+2x)/(x^2-4)+8/(x^2-4)}}}


{{{(3x^2-6x-(x^2+2x)+8)/(x^2-4)}}}


{{{(3x^2-6x-x^2-2x+8)/(x^2-4)}}}


{{{(2x^2-8x+8)/(x^2-4)}}}


{{{2(x^2-2x-2x+4)/(x^2-4)}}}


{{{(2(x^2-2x)-(2x-4)))/((x-2)(x+2)}}}


{{{(2(x(x-2)-2(x-2)))/((x-2)(x+2))}}}


{{{(2(x-2)(x-2))/((x-2)(x+2))}}}


{{{(2cross((x-2))(x-2))/(cross((x-2))(x+2))}}}


{{{2(x-2)/(x+2)}}}