Question 775371
7(x^2+8)-(2-4)
-------------------
16(x)+8
<pre>
{{{(7(x^2+8)-(2-4))/(16(x)+8)}}}

If you distribute the -1, considering it as

{{{(7(x^2+8)-1(2-4))/(16(x)+8)}}}

you get:

{{{(7(x^2+8)-2+4)/(16(x)+8)}}}

or

{{{(7(x^2+8)+2)/(16(x)+8)}}}

If you subtract them first, you get

{{{(7(x^2+8)-(-2))/(16(x)+8)}}}

{{{(7(x^2+8)+2)/(16(x)+8)}}}

So it doesn't matter which you do.  However
when you can combine the terms inside the
parentheses, that is always shorter.
The only time you MUST distribute is when 
a parentheses contains unlike terms, like
the first parentheses.

You must distribute the 7:

{{{(7x^2+56+2)/(16(x)+8)}}}

And then combine like terms:

{{{(7x^2+58)/(16(x)+8)}}}

Now plug in -2 for x

{{{(7(-2)^2+58)/(16(-2)+8)}}}

{{{(7(4)+58)/(-32+8)}}}

{{{(28+58)/(-24)}}}

{{{86/(-24)}}}

{{{-86/24}}}

Divide top and bottom by 2

{{{-43/12}}}

Edwin</pre>