Question 774708
<font face="Times New Roman" size="+2">


If a rational root exists for *[tex \LARGE \ \ a_0x^n\ +\ a_1x^{n-1}\ +\ a_2x^{n-2}\ \cdot\cdot\cdot \ + a_{n-1}x\ +\ a_n\ =\ 0], then it is of the form *[tex \LARGE \pm\frac{p}{q}] where *[tex \LARGE p] is an integer factor of *[tex \LARGE a_n] and *[tex \LARGE q] is an integer factor of *[tex \LARGE a_0]


So the possible rational roots of your equation are:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \pm1,\,\pm2,\,\ \text{and}\ \pm\frac{1}{2}]


Test each of the six possibilities to determine which, if any, of the possible rational roots is indeed a root.


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
<font face="Math1" size="+2">Egw to Beta kai to Sigma</font>
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>