Question 768178
<pre>
Assume the exponential model has the form:

y = a·e<sup>b·x</sup>

Substituting (x,y) = (0,3681),

3681 = a·e<sup>b·0</sup>

3681 = a·(1)

3681 = a

So we now know a, and can write:

y = 3681·e<sup>b·x</sup>

Substituting (x,y) = (1,5888),

5888 = 3681·e<sup>b·1</sup>

{{{5888/3681}}} = e<sup>b</sup>

b = {{{ln(5888/3681)}}}

b = 0.469731927

Substituting (x,y) = (2,9422),

5888 = 3681·e<sup>b·2</sup>

{{{9422/3681}}} = e<sup>b</sup>

2b = {{{ln(9422/3681)}}}

2b = 0.9398629259

 b = 0.4699314629

Both values of b round off the b = 0.470

So we will use 0.470 for b, and the formula

y = 3681·e<sup>b·x</sup>

becomes:

y = 3681·e<sup>0.470x</sup>

Now we substitute x=4

y = 3681·e<sup>0.470·4</sup>

y = 3681·e<sup>1.88</sup>

y = 24123.4514

Rounded to the nearest whole number,

y = 24123

Edwin</pre>