Question 66044
For all x>0 and y>0, the radical expression: square root of 3 divided by 3 times the square root of x minus the square root of y.
I assume you are to simplify:
{{{sqrt(3)/(3*sqrt(x)-sqrt(y))}}}
If so, multiply the numerator and denominator by the conjugate of the denominator: {{{3*sqrt(x)+sqrt(y)}}}
{{{sqrt(3)*(3*sqrt(x)+sqrt(y))/((3*sqrt(x)-sqrt(y))*(3*sqrt(x)+sqrt(y)))}}}
{{{(3*sqrt(3*x)+sqrt(3*y))/(3*3*sqrt(x*x)+3*sqrt(x*y)-3*sqrt(y*x)-sqrt(y*y))}}}
{{{(3*sqrt(3x)+sqrt(3y))/(9*sqrt(x^2)-sqrt(y^2))}}}
{{{highlight((3*sqrt(3x)+sqrt(3y))/(9x-y))}}}
Happy Calculating!!!!