Question 766208
<font face="Times New Roman" size="+2">


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 2\cos(x)\ =\ \sqrt{3}]

Divide by 2


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \cos(x)\ =\ \frac{\sqrt{3}}{2}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x\ =\ \arccos\left(\frac{\sqrt{3}}{2}\right)]


Look at the unit circle:


<img src="http://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Unit_circle_angles_color.svg/300px-Unit_circle_angles_color.svg.png">


The cosine of the angle formed by the *[tex \LARGE x]-axis and the terminal ray is the *[tex \LARGE x]-coordinate of the intersection of the terminal ray and the unit circle.  Find the two points in the diagram that have *[tex \LARGE x]-coordinates of *[tex \LARGE \frac{\sqrt{3}}{2}].  The indicated angles are your two possible values for *[tex \LARGE x] in your problem.


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
<font face="Math1" size="+2">Egw to Beta kai to Sigma</font>
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>