Question 65856
Hi! I need some help to simplify and reduce to lowest terms

(w/45)+[(3w+2)/30]
The prime factors of 45 are: 3*3*5
The Prime factors of 30 are:2*3*5
Therefore the LCD is:2*3*3*5=90
{{{2w/(2*45)+3(3w+2)/(3*30)}}}
{{{2w/90+(9w+6)/90}}}
{{{(2w+9w+6)/90}}}
{{{highlight((11w+6)/90)}}}

and

[1/(10a^3b)]+[4/(ac^3)]
The prime factors of 10a^3b are 2*5*a^3b
the prime factors of ac^3 are ac^3
The LCD is: 2*5*a^3bc^3=10a^3bc^3
{{{1*c^3/(c^3(10a^3*b))+4*10a^2b/(10a^2*b(ac^3))}}}
{{{c^3/(10a^3*bc^3)+40a^2*b/(10a^3*bc^3)}}}
{{{highlight((c^3+40a^2*b)/(10a^3*bc^3))}}}
Happy Calculating!!!!