Question 762706
<font face="Times New Roman" size="+2">


Area is *[tex \LARGE lw].  But *[tex \LARGE l\ =\ 2w\ +\ 1], so *[tex \LARGE A(w)\ =\ 2w^2\ +\ w].  If *[tex \LARGE A\ =\ 45\text{yd}^2] then:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 2w^2\ +\ w\ =\ 45]


Put the quadratic into standard form and solve for *[tex \LARGE w].  Discard the absurd negative root.  Then calculate *[tex \LARGE 2w\ +\ 1]


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
<font face="Math1" size="+2">Egw to Beta kai to Sigma</font>
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>