Question 64106
Use Gaussian elimination with backward substitution to solve the system of linear equations. Write the solution as an ordered pair or ordered triple, whenever possible.
x+2y+z=3
x+y-z=3
-x-2y+z=-5
1,2,1,3
1,1,-1,3
-1,-2,1,-5
R2=R2-R1....AND....R3=R3+R1
1,2,1,3
0,-1,-2,0
0,0,2,-2
R2=-R2.....R3=R3/2
1,2,1,3
0,1,2,0
0,0,1,-1
R2=R2-2*R3............R1=R1-R3
1,2,0,4
0,1,0,2
0,0,1,-1
R1=R1-2*R2
1,0,0,0
0,1,0,2
0,0,1,-1
HENCE X=0.....Y=2..........Z=-1
(0,2,-1)