Question 758447
two questions and answers:
a) integrate 3^x
-------
{{{3^x = e^(x*ln(3))}}}
{{{INT(e^(x*ln(3))) = e^(x*ln(3))/ln(3)}}}
= answer
answer: 3^x/In(3)
==============
b) find the exact area enclosed by the curve y=e^3x - 2, the x-axis and the lines x=0 and x=1
{{{INT(e^(3x) - 2) = e^(3x)/3 - 2x}}} Ignore the constant of integration
{{{INT(1) = e^3/3 - 2}}}
{{{INT(0) = 1/3}}}
=============
What is the exponent of e?  3x?  or 3x-2?
answer: 4In(2)/3 + e^3/3 - 3 =~ 4.619375