Question 758406

{{{2a/(a^2+9a+8) - 3a/(a^2+8a+7)}}}


{{{2a/(a^2+a+8a+8) - 3a/(a^2+a+7a+7)}}}


{{{2a/((a^2+a)+(8a+8)) - 3a/((a^2+a)+(7a+7))}}}


{{{2a/(a(a+1)+8(a+1)) - 3a/(a(a+1)+7(a+1))}}}


{{{2a/((a+8)(a+1)) - 3a/((a+7)(a+1))}}}.......common denominator


{{{(2a(a+7) - 3a(a+8))/((a+8)(a+7)(a+1))}}}


{{{(2a^2+14a - 3a^2-24a)/((a+8)(a+7)(a+1))}}}


{{{( - a^2-10a)/((a+8)(a+7)(a+1))}}}


{{{-a( a+10)/((a+8)(a+7)(a+1))}}}


solutions will be {{{a}}} that make numerator equal to zero, since denominator cannot be equal to zero


so, {{{-a( a+10)=0}}} if {{{a=0}}} or {{{a=-10}}}