Question 757427
{{{(1/3) log (b^a) + (2/3) log (b^b) - (3/4) log( b^c )-(2/3) log(b^d )}}}.......multiply all terms to get common denominator 12


{{{((1*12)/3) log (b ^ a) + ((2*12)/3 )log (b ^ b) - ((3*12)/4) log( b ^ c )-((2*12)/3) log (b ^ d )}}}



{{{((1*4)/12) log (b ^ a) + ((2*4)/12) log (b ^ b) - ((3*3)/12) log( b ^ c )-(2*4)/12 log (b ^ d )}}}



{{{(4/12) log ((b ^ a)) +(8/12) log ((b ^ b)) - (9/12) log(( b ^ c ))-(8/12) log ((b ^ d ))}}}



{{{(1/12)(4 log (b ^ a) +8log ((b ^ b)) - 9 log( b ^ c )-8 log (b ^ d ))}}}



{{{(1/12)( log(b^(4a)) +log (b ^(8b)) -  log( b ^(9c) )-log (b ^(8d )))}}}



{{{(1/12)( log ((b ^(4a))  (b ^(8b)) )-  (log(( b ^(9c) )+log(b ^ (8d) ))))}}}



{{{(1/12)( log ((b ^(4a))  (b ^(8b)) )-  (log(( b ^(9c) )(b ^ (8d) ))))}}}


{{{(1/12)( log (((b ^(4a))  (b ^(8b)) )/( b ^(9c) )(b ^ (8d) ))))}}}


{{{(1/12)( log ((b ^((4a+8b)) )/( b ^((9c-8d)) ) ))))}}}


{{{(1/12)( log ((b ^((4a+8b-9c+8d))  ))))}}}