Question 757017
<font face="Times New Roman" size="+2">


If *[tex \LARGE c\ =\ -3] is a root of *[tex \LARGE c^3\ +\ c^2\ -\ 7c\ -3\ =\ 0], then *[tex \LARGE c\ +\ 3] must be a factor of *[tex \LARGE c^3\ +\ c^2\ -\ 7c\ -\ 3]


Use either polynomial long division (<a href="http://www.purplemath.com/modules/polydiv2.htm">Purple Math Polynomial Long Division</a>) to derive the other (quadratic) factor by dividing *[tex \LARGE c^3\ +\ c^2\ -\ 7c\ -\ 3] by *[tex \LARGE c\ +\ 3], or by using synthetic division ((<a href="http://www.purplemath.com/modules/synthdiv.htm">Purple Math Synthetic Division</a>) to find the coefficients of the quadratic factor.  Either way, solve the resulting quadratic equation.  The roots will be irrational, so you will not be able to solve by factoring; use Completing the Square or the Quadratic Formula.


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
<font face="Math1" size="+2">Egw to Beta kai to Sigma</font>
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>