Question 65436
<pre><font size = 5><b>                ____________  
(-3i<sup>2</sup> + 4i - 5)<font face = "symbol">Ö</font>-9 - 4 + 5i<sup>3</sup>

Combine the -9 and the -4 under the radical

                _________  
(-3i<sup>2</sup> + 4i - 5)<font face = "symbol">Ö</font>-13 + 5i<sup>3</sup>


Since  i<sup>2</sup> = -1 and i<sup>3</sup> = -i, replace those
                    ___________
( -3(-1) + 4i - 5 )<font face = "symbol">Ö</font>-13 + 5(-i)
              ________
( 3 + 4i - 5)<font face = "symbol">Ö</font>-13 - 5i
            ________  
( -2 + 4i )<font face = "symbol">Ö</font>-13 - 5i

Assume this equals to the complex number A + Bi, where
A and B are real numbers

          ________  
(-2 + 4i)<font face = "symbol">Ö</font>-13 - 5i = A + Bi

Square both sides:

            ________  
(-2 + 4i)<sup>2</sup>(<font face = "symbol">Ö</font>-13 - 5i)<sup>2</sup> = (A + Bi)<sup>2</sup>

(4 - 16i + 16i<sup>2</sup>)(-13 - 5i) = A<sup>2</sup> + 2ABi + B<sup>2</sup>i<sup>2</sup>

Replace the i<sup>2</sup>'s by -1

( 4 - 16i + 16(-1) )(-13 - 5i) = A<sup>2</sup> + 2ABi + B<sup>2</sup>(-1)

( 4 - 16i - 16 )(-13 - 5i) = A<sup>2</sup> + 2ABi - B<sup>2</sup>

(-12 - 16i)(-13 - 5i) = A² + 2ABi - B<sup>2</sup>

156 + 60i + 208i + 80i<sup>2</sup> = A<sup>2</sup> + 2ABi - B<sup>2</sup>

Replace the i<sup>2</sup> by -1

156 + 60i + 208i + 80(-1) = A<sup>2</sup> + 2ABi - B<sup>2</sup>

156 + 60i + 208i - 80 = A<sup>2</sup> + 2ABi - B<sup>2</sup>

76 + 268i = A<sup>2</sup> + 2ABi - B<sup>2</sup>

The real numbers on the left must equal the real
numbers on the right, so

76 = A<sup>2</sup> - B<sup>2</sup>

A<sup>2</sup> - B<sup>2</sup> = 76

The imaginary numbers on the left must equal the
imaginary numbers on the right, so

268i = 2ABi

Dividing thru by 2i

134 = AB

 AB = 134

So we have this system of equations:

A<sup>2</sup> - B<sup>2</sup> = 76
     AB = 134

To make things easier square the second equation

    A<sup>2</sup>B<sup>2</sup> = 17956

Solve it for B<sup>2</sup>

      B<sup>2</sup> = 17956/A<sup>2</sup>

Substitute for B<sup>2</sup> in the first equation

A<sup>2</sup> - 17956/A<sup>2</sup> = 76

A<sup>4</sup> - 17956 = 76A<sup>2</sup>

A<sup>4</sup> - 76A<sup>2</sup> - 17956 = 0

Solve that for A<sup>2</sup> by the quadratic formula

A<sup>2</sup> = 177.2838828, A<sup>2</sup> = -101.2838828

But since A is real A<sup>2</sup> is positive so we discard
the negative value

A<sup>2</sup> = 177.2838828

Taking square roots:

A = ±13.31479939

Substitute 177.2839928 for A<sup>2</sup> in

A<sup>2</sup> - B<sup>2</sup> = 76

177.2838828 - B<sup>2</sup> = 76

177.2838828 - 76 = B<sup>2</sup>

101.2838828 = B<sup>2</sup>

B<sup>2</sup> = 101.2838828

Taking square roots:

B = ± 10.06398941

So we get four solutions:

A + Bi =  13.31479939 + 10.06398941i
A + Bi =  13.31479939 - 10.06398941i
A + Bi = -13.31479939 + 10.06398941i
A + Bi = -13.31479939 - 10.06398941i

However we can eliminate two of these because
of the equation

     AB = 134

since 134 is a positive number, which means
that A and B must have the same sign.  This
only leaves the two solutions:

A + Bi =  13.31479939 + 10.06398941i
A + Bi = -13.31479939 - 10.06398941i

Both those are correct answers because
there are two complex imaginary square
roots of a complex imaginary number.
The original problem contains
a square root of a complex number, thus
we expect two answers.

Edwin</pre>