Question 754663
Assume the problem is:
{{{(-5x)/((3x+3))}}} ={{{(2x)/((6x+6)))}}} + {{{((6x-4))/((x+1))}}}
Factor the denominators
{{{(-5x)/(3(x+1))}}} ={{{(2x)/(6(x+1)))}}} + {{{((6x-4))/((x+1))}}}
Multiply each term by (x+1) and we have
{{{(-5x)/3}}} ={{{(2x)/6}}} + (6x-4)
multiply each term by 6, gets rid of the denominators
2(-5x) = 2x + 6(6x-4)
-10x = 2x + 36x - 24
24 = 2x + 36x + 10x
24 = 48x
x = 24/48
x = {{{1/2}}}
I'll let you confirm this answer in the original problem using x=.5
{{{(-5*.5)/((3(.5)+3))}}} ={{{(2*.5)/((6(.5)+6)))}}} + {{{((6(.5)-4))/((.5+1))}}}