Question 752945


Looking at the expression {{{5d^2+6d-8}}}, we can see that the first coefficient is {{{5}}}, the second coefficient is {{{6}}}, and the last term is {{{-8}}}.



Now multiply the first coefficient {{{5}}} by the last term {{{-8}}} to get {{{(5)(-8)=-40}}}.



Now the question is: what two whole numbers multiply to {{{-40}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{6}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-40}}} (the previous product).



Factors of {{{-40}}}:

1,2,4,5,8,10,20,40

-1,-2,-4,-5,-8,-10,-20,-40



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-40}}}.

1*(-40) = -40
2*(-20) = -40
4*(-10) = -40
5*(-8) = -40
(-1)*(40) = -40
(-2)*(20) = -40
(-4)*(10) = -40
(-5)*(8) = -40


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{6}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-40</font></td><td  align="center"><font color=black>1+(-40)=-39</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>2+(-20)=-18</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>4+(-10)=-6</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>5+(-8)=-3</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>40</font></td><td  align="center"><font color=black>-1+40=39</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>-2+20=18</font></td></tr><tr><td  align="center"><font color=red>-4</font></td><td  align="center"><font color=red>10</font></td><td  align="center"><font color=red>-4+10=6</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-5+8=3</font></td></tr></table>



From the table, we can see that the two numbers {{{-4}}} and {{{10}}} add to {{{6}}} (the middle coefficient).



So the two numbers {{{-4}}} and {{{10}}} both multiply to {{{-40}}} <font size=4><b>and</b></font> add to {{{6}}}



Now replace the middle term {{{6d}}} with {{{-4d+10d}}}. Remember, {{{-4}}} and {{{10}}} add to {{{6}}}. So this shows us that {{{-4d+10d=6d}}}.



{{{5d^2+highlight(-4d+10d)-8}}} Replace the second term {{{6d}}} with {{{-4d+10d}}}.



{{{(5d^2-4d)+(10d-8)}}} Group the terms into two pairs.



{{{d(5d-4)+(10d-8)}}} Factor out the GCF {{{d}}} from the first group.



{{{d(5d-4)+2(5d-4)}}} Factor out {{{2}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(d+2)(5d-4)}}} Combine like terms. Or factor out the common term {{{5d-4}}}



===============================================================



Answer:



So {{{5d^2+6d-8}}} factors to {{{(d+2)(5d-4)}}}.



In other words, {{{5d^2+6d-8=(d+2)(5d-4)}}}.



Note: you can check the answer by expanding {{{(d+2)(5d-4)}}} to get {{{5d^2+6d-8}}} or by graphing the original expression and the answer (the two graphs should be identical).