Question 752196
Given 9 x²-4y²+18x+56y-223=0
Name the conic section, and how would you know?
***
9x²-4y²+18x+56y-223=0
complete the square
9x²+18x-4y²+56y-223=0
9(x²+2x+1)-4(y²+14y+49)=223+9-196
9(x+1)^2-4(y+7)^2=36
(x+1)^2/4-(y+7)^2/9=1
This conic is a hyperbola with horizontal transverse axis with center at (-1,-7)
Its standard form of equation: {{{(x-h)^2/a^2-(y-k)^2/b^2=1}}}, (h,k)=(x,y) coordinates of center