Question 752307
Let {{{ w }}} = the wind speed in mi/hr
Let {{{ p }}} = the speed of the plane in mi/hr
{{{ p + w }}} = speed of the plane flying with the wind
{{{ p - w }}} = speed of the plane flying against the wind
----------------------
Flying with the wind:
(1) {{{ 3000 = ( p + w )*5 }}}
Flying against the wind:
(2) {{{ 3000 = ( p - w )*6 }}}
-----------------------
Add the equations
(1) {{{ p + w = 600 }}}
(2) {{{ p - w = 500 }}}
{{{ 2p = 1100 }}}
{{{ p = 550 }}}
and
(1) {{{ p + w = 600 }}}
(1) {{{ 550 + w = 600 }}}
(1) {{{ w = 50 }}}
The speed of the plane is 550 mi/hr
The speed of the wind is 50 mi/hr
check:
(1) {{{ 3000 = ( 550 + 50 )*5 }}}
(1) {{{ 3000 = 600*5 }}}
(1) {{{ 3000 = 3000 }}}
and
(2) {{{ 3000 = ( 550 - 50 )*6 }}}
(2) {{{ 3000 = 500*6 }}}
(2) {{{ 3000 = 3000 }}}
OK