Question 750907
x(x+1) = 182


x^2 + x = 182


x^2 + x - 182 = 0


Use the quadratic formula to solve for x


{{{x = (-b+-sqrt(b^2-4ac))/(2a)}}}


{{{x = (-(1)+-sqrt((1)^2-4(1)(-182)))/(2(1))}}} Plug in {{{a = 1}}}, {{{b = 1}}}, {{{c = -182}}}


{{{x = (-1+-sqrt(1-(-728)))/(2)}}}


{{{x = (-1+-sqrt(1+728))/(2)}}}


{{{x = (-1+-sqrt(729))/2}}}


{{{x = (-1+sqrt(729))/2}}} or {{{x = (-1-sqrt(729))/2}}}


{{{x = (-1+27)/2}}} or {{{x = (-1-27)/2}}}


{{{x = 26/2}}} or {{{x = -28/2}}}


{{{x = 13}}} or {{{x = -14}}}


So the two numbers are either


13 and 14


or


-14 and -13