Question 65076
1. Factor completely:
{{{x^3y-3x^2y-10xy}}} First factor xy
{{{xy(x^2-3x-10)}}} Now factor the parentheses.
{{{xy(x-5)(x+2)}}}

2. Factor completely:
{{{x^2-4xy+12ax-48ay}}} Factor by grouping as shown:
{{{(x^2-4xy) + (12ax-48ay)}}} Factor x from the first group and 12a from the second group.
{{{x(x-4y) + 12a(x-4y)}}} Now factor the (x-4y).
{{{(x-4y)(x+12a)}}}

3. Factor completely:
{{{x^2-5x-6}}}
{{{(x-6)(x+1)}}}

4. Factor completely:
{{{36x^2-4y^2}}} This is the difference of two squares:
{{{(6x-2y)(6x+2y)}}}

5. Factor completely:
{{{9x^2+40x+16}}}
{{{(9x+4)(x+4)}}}

6. Factor completely:
{{{3x^2-30x+48}}} First factor 3.
{{{3(x^3-10x+16)}}} Now factor the parentheses.
{{{3(x-2)(x-8)}}}