Question 747546
Determine an equation for the hyperbola .
Foci at (12,0) (-12,0) and transverse axis of length 18
***
Hyperbola has a horizontal transverse axis.
Its standard form of equation: {{{(x-h)^2/a^2-(y-k)^2/b^2=1}}}, (h,k)=(x,y) coordinates of center.
..
center: (0,0)
Given length of horizontal transverse axis=18=2a
a=9
a^2=81
c=12 (distance from center to foci on the transverse axis)
c^2=144
c^2=a^2+b^2
b^2=c^2-a^2=144-81=63
Equation of given hyperbola: {{{x^2/81-y^2/63=1}}}