Question 743371
Graph the ellipse and identify the center,vertrices,foci and endpoints of 
{{{25x^2+9y^2=225}}}
{{{x^2/9+y^2/25=1}}}
This ellipse has a vertical major axis.
Its standard form of equation: {{{(x-h)^2/b^2+(y-k)^2/a^2=1}}}, a>b, (h,k)=(x,y) coordinates of center
center: (0,0)
a^2=25
a=5
vertices: (0,0±a)=(0,0±5)=(0,-5) and (0,5)
..
b^2=9
b=3
end points of minor axis: (0±b,0)=(0±3,0)=(-3,0) and (3,0)
..
c^2=a^2-b^2=25-9=16
c=4
foci: (0,0±c)=(0,0±4)=(0,-4) and (0,4)