Question 742896
How do you prove this equation: 
{{{tan^2(x)-sin^2(x)=sin^2(x)tan^2(x)}}}
start from left side
{{{tan^2(x)-sin^2(x)
=sin^2(x)/cos^2(x)-sin^2(x)
=(sin^2(x)-cos^2(x)sin^2(x))/cos^2(x)
=(sin^2(x))(1-cos^2(x))/cos^2(x)
=(sin^4(x))/cos^2(x)
=sin^2(x)sin^2(x)/cos^2(x)
=sin^2(x)tan^2(x)}}}
verified: left side=right side