Question 742464


Looking at the expression {{{5z^2+19z-4}}}, we can see that the first coefficient is {{{5}}}, the second coefficient is {{{19}}}, and the last term is {{{-4}}}.



Now multiply the first coefficient {{{5}}} by the last term {{{-4}}} to get {{{(5)(-4)=-20}}}.



Now the question is: what two whole numbers multiply to {{{-20}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{19}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-20}}} (the previous product).



Factors of {{{-20}}}:

1,2,4,5,10,20

-1,-2,-4,-5,-10,-20



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-20}}}.

1*(-20) = -20
2*(-10) = -20
4*(-5) = -20
(-1)*(20) = -20
(-2)*(10) = -20
(-4)*(5) = -20


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{19}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>1+(-20)=-19</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>2+(-10)=-8</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>4+(-5)=-1</font></td></tr><tr><td  align="center"><font color=red>-1</font></td><td  align="center"><font color=red>20</font></td><td  align="center"><font color=red>-1+20=19</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-2+10=8</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-4+5=1</font></td></tr></table>



From the table, we can see that the two numbers {{{-1}}} and {{{20}}} add to {{{19}}} (the middle coefficient).



So the two numbers {{{-1}}} and {{{20}}} both multiply to {{{-20}}} <font size=4><b>and</b></font> add to {{{19}}}



Now replace the middle term {{{19z}}} with {{{-z+20z}}}. Remember, {{{-1}}} and {{{20}}} add to {{{19}}}. So this shows us that {{{-z+20z=19z}}}.



{{{5z^2+highlight(-z+20z)-4}}} Replace the second term {{{19z}}} with {{{-z+20z}}}.



{{{(5z^2-z)+(20z-4)}}} Group the terms into two pairs.



{{{z(5z-1)+(20z-4)}}} Factor out the GCF {{{z}}} from the first group.



{{{z(5z-1)+4(5z-1)}}} Factor out {{{4}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(z+4)(5z-1)}}} Combine like terms. Or factor out the common term {{{5z-1}}}



===============================================================



Answer:



So {{{5z^2+19z-4}}} factors to {{{(z+4)(5z-1)}}}.



In other words, {{{5z^2+19z-4=(z+4)(5z-1)}}}.



Note: you can check the answer by expanding {{{(z+4)(5z-1)}}} to get {{{5z^2+19z-4}}} or by graphing the original expression and the answer (the two graphs should be identical).